

NASA Activities in Risk Assessment

NASA Project Management Conference

March 30-31, 2004

Michael G. Stamatelatos, Ph.D., Director Safety and Assurance Requirements Division Office of Safety and Mission Assurance NASA Headquarters

NASA is a Pioneer and a Leader in Space; Therefore Its Business Is Inherently Risky

Space Transportation

- ◆ Space Shuttle
- ◆ Orbital Space Plane

International Space Station

◆ Safe assembly and operation

Our Goal

- Improve risk awareness in the Agency
 - Conduct PRA training for line and project managers and for personnel
- Develop a corps of in-house PRA experts
- Transition PRA from a curiosity object to baseline method for integrated system safety, reliability and risk assessment
- Adopt organization-wide risk informed culture
 - PRA to become a way of life for safety and technical performance improvement and for cost reduction
 - Implement risk-informed management process

Probabilistic Risk Assessment (PRA) Answers Three Basic Questions

Risk is a set of triplets that answer the questions:

- 1) What can go wrong? (accident scenarios)
- 2) How likely is it? (probabilities)
- 3) What are the consequences? (adverse effects)

Kaplan & Garrick, Risk Analysis, 1981

Relationship Between Risk Management and Probabilistic Risk Assessment (PRA)

NASA Risk Management and Assessment Requirements

- NPG 7120.5A, NASA Program and Project Management Processes and Requirements
 - ➤ The program or project manager shall apply risk management principles as a decision-making tool which enables programmatic and technical success.
 - Program and project decisions shall be made on the basis of an orderly risk management effort.
 - ➤ Risk management includes identification, assessment, mitigation, and disposition of risk throughout the PAPAC (Provide Aerospace Products And Capabilities) process.
- NPG 8000.4, Risk Management Procedures and Guidelines
 - Provides additional information for applying risk management as required by NPG 7120.5A.
- NPG 8705.x (draft) PRA Application Procedures and Guidelines

progr

How Does PRA Help Safety?

Provides a basis for risk reduction through:

- 1. Accident/Mishap Prevention
- 2. Accident/Mishap Consequence Mitigation

The Concept of an Accident Scenario

Risk Scenario is a string of events that (if they occur) will lead to an undesired end state.

Exact vs. Uncertain Probabilities

Quantification of Uncertainty

Uncertainty Distribution:

P(x) is the probability (or xth percentile confidence) that the result value is x median is the 50th percentile

Uncertainty Range:

Uncertainty range (spread) from the 5th to the 95th percentile

Probability density function, e.g., probability of LOCV

5th percentile 95th percentile

Uncertainty (confidence) range

Event- and Fault-Tree Scenario Modeling

PRA Methodology Synopsis

What Decision Types Can PRA Support?

- Safety improvement in design, operation, maintenance and upgrade (throughout life cycle);
- Mission success enhancement;
- Performance improvement; and
- Cost reduction for design, operation and maintenance

For all these areas of application, PRA can help:

- Identify leading risk contributors and their relative values
- Indicate priorities for resource allocation
- Optimize results for given resource availability

Areas of PRA Application at NASA

- In Design and Conceptual Design (e.g., Crew Exploration Vehicle, Mars missions, Project Prometheus)
- For Upgrades (Space Shuttle)
- For Development/construction/assembly (e.g., International Space Station)
- When there are requirements for Safety Compliance (e.g., nuclear missions like Mars '03; Project Prometheus, Mars Sample Return)

NASA Procedural Requirement NPR 8705 (Draft)

CONSEQUENCE CATEGORY	CRIT	ERIA / SPECIFICS	NASA PROGRAM/PROJECT (Classes and/or Examples)	PRA SCOPE
Human Safety and Health	Public Safety	Planetary Protection Program Requirement	Mars Sample Return Missions	F
		White House Approval (PD/NSC-25)	Nuclear Payloads (e.g., Cassini, Ulysses, Mars 2003)	F
		Space Missions with Flight Termination Systems	Launch Vehicles	F
	Human Space Flight		International Space Station	F
			Space Shuttle	F
			Orbital Space Plane/Space Launch Initiative	F
Mission Success (for non-human rated missions)	High Strategic Importance		Mars Program	F
	High Schedule Criticality		Launch Window (e.g., planetary missions)	F
	All Other Missions		Earth Science Missions (e.g., EOS, QUICKSCAT)	L/S
			Space Science Missions (e.g., SIM, HESSI)	L/S
			Technology Demonstration/Validation (e.g., EO-1, Deep Space 1)	L/S

F = Full scope; L/S = Limited or Simplified

NASA Special PRA Methodology Needs

- Broad range of programs: Conceptual non-human rated science projects; Multi-stage design and construction of the International Space Station; Upgrades of the Space Shuttle
- Risk initiators that vary drastically with type of program
- Unique design and operating environments (e.g., microgravity effects on equipment and humans)
- Multi-phase approach in some scenario developments
- Unique external events (e.g., micro-meteoroids and orbital debris)
- Unique types of adverse consequences (e.g., fatigue and illness in space) and associated databases
- Different quantitative methods for human reliability (e.g., astronauts vs. other operating personnel)
- Quantitative methods for software reliability

Space Shuttle Probabilistic Risk Assessment

STS Nominal Mission Profile

Current Shuttle PRA Results for LOCV (provisional)

Summary of Shuttle PRA Historical Results

Annual Voluntary Risks in Some Sports - Comparable in Magnitude to Shuttle Risk

	Professional stunting	1/100
•	Dedicated mountain climbing	1/167
•	Air show/air racing and acrobatics	1/200
•	Amateur flying in home-built aircraft	1/333
•	Experienced whitewater boating	1/370
•	Sport parachuting	1/500

Source: R. Wilson and E. Crouch,

Risk-Benefit Analysis,

Harvard University Press, 2001

International Space Station (ISS) PRA

- 1999 -- The NASA Advisory Council recommended, the NASA Administrator concurred, and the ISS Program began a PRA.
 - The modeling will be QRAScompatible.
 - First portion of PRA (through Flight 7A) - delivered in Dec. 2000; Second portion (through Flight 12A) delivered in July 2001.

Important ISS PRA Findings

- **◆MMOD**: lead contributor to loss of station (LOS) risk
- ◆Illness in space: lead contributor to loss of crew (LOC) risk

Approach to PRA for NASA Top-Level Designs (e.g., Crew Exploration Vehicle)

Advanced PRA Methods or Tools

- QRAS (Quantitative Risk Assessment System) – a state of the art integrated PRA computer program
- Galileo/ASSAP Dynamic fault tree program
- Software reliability methodology for use in PRA
- External event methodology for micrometeoroid and orbital debris (MMOD) risk into the overall risk assessment

QRAS 1.7 Is Being Commercialized

In Summary, We Plan to

- Continue to improve risk awareness
 - Conduct PRA training for line and project managers and for personnel
- Continue to develop a corps of in-house PRA experts
- Transition PRA to baseline method for safety assessment
- Integrate risk assessment with system safety and reliability assessment
- Adopt organization-wide risk informed culture
 - PRA to become a way of life for safety and technical performance improvement and for cost reduction
 - Implement risk-informed management process